Static and dynamic heterogeneities in irreversible gels and colloidal gelation

نویسنده

  • A. Coniglio
چکیده

We compare the slow dynamics of irreversible gels, colloidal gels, glasses and spin glasses by analyzing the behavior of the so called non-linear dynamical susceptibility, a quantity usually introduced to quantitatively characterize the dynamical heterogeneities. In glasses this quantity typically grows with the time, reaches a maximum and then decreases at large time, due to the transient nature of dynamical heterogeneities and to the absence of a diverging static correlation length. We have recently shown that in irreversible gels the dynamical susceptibility is instead an increasing function of the time, as in the case of spin glasses, and tends asymptotically to the mean cluster size. On the basis of molecular dynamics simulations, we here show that in colloidal gelation where clusters are not permanent, at very low temperature and volume fractions, i.e. when the lifetime of the bonds is much larger than the structural relaxation time, the non-linear susceptibility has a behavior similar to the one of the irreversible gel, followed, at higher volume fractions, by a crossover towards the behavior of glass forming liquids. PACS numbers: 82.70.Dd, 64.60.Ak, 82.70.Gg Static and dynamic heterogeneities in irreversible gels and colloidal gelation 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure, dynamics, and rheology of colloid-polymer mixtures: from liquids to gels.

We investigate the structural, dynamical, and viscoelastic properties of colloid-polymer mixtures at intermediate colloid volume fraction and varying polymer concentrations, thereby tuning the attractive interactions. Within the examined range of polymer concentrations, the samples varied from fluids to gels. In the liquid phase, an increasing correlation length of the density fluctuations when...

متن کامل

Ultra-long-range dynamic correlations in a microscopic model for aging gels.

We use large-scale computer simulations to explore the nonequilibrium aging dynamics in a microscopic model for colloidal gels. We find that gelation resulting from a kinetically arrested phase separation is accompanied by "anomalous" particle dynamics revealed by superdiffusive particle motion and compressed exponential relaxation of time correlation functions. Spatiotemporal analysis of the d...

متن کامل

Size dependence of microprobe dynamics during gelation of a discotic colloidal clay

oft materials, such as gels and colloidal glasses, often exhibit different rheological properties at ulk and microscopic scales as a result of their complex microstructure. This phenomenon has ecently been demonstrated for a gel-forming aqueous dispersion of Laponite clay Oppong et al. hys. Rev. E 78, 021405 2008 . For this material, microrheology reveals a significantly weaker el and a longer ...

متن کامل

Colloidal aggregate and gel incubated by amorphous conjugated polymer in hybrid-solvent medium.

A practical valuable amorphous conjugated polymer, poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV), has been revealed to foster an abundance of micrometer-sized colloidal aggregates at relatively low concentration (below 1 wt %) in a hybrid-solvent medium that contains a nonsolvent, and the solution turned into gel by colloidal bridging after one-day aging at 30 °C. In contr...

متن کامل

Glasslike kinetic arrest at the colloidal-gelation transition.

We show that gelation of weakly attractive colloids is remarkably similar to the colloidal glass transition. Like the glass transition, dynamic light scattering functions near gelation scale with scattering vector, and exhibits a two-step decay with a power-law divergence of the final decay time. Like the glass transition, static light scattering does not change upon gelation. These results sug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006